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Abstract

The simultaneous optimization of material properties and structural layout for an elastic continuum is
formulated and analyzed[ The objective is to obtain the maximum structural sti}ness for prescribed surface
loads and displacements\ taking into account a body force that depends on the structural layout[ Optimization
with an account of self!weight or centrifugal forces are examples of these type of problems[ Arbitrary
elasticity tensor _elds are considered as the problem|s variable and necessary conditions satis_ed by the
solution are established[ The use of a spectral decomposition of the elasticity tensor is emphasized since it
provides a simple geometrical interpretation[ Typical examples which illustrate the e}ects of the structure!
dependent body force are analyzed[ It is found that a commonly used isoperimetric restriction "known as
the resource constraint# is not necessarily active and that the optimal structure is locally sti}er in areas where
the body force and the displacement _eld have opposite directions and locally weaker otherwise[ This\
interestingly\ leads to a non!symmetrical distribution of material properties even for prismatic bodies under
anti!symmetric surface loads[ Þ 0888 Elsevier Science Ltd[ All rights reserved[

0[ Introduction

The problem of characterizing the maximum structural sti}ness of a linearly elastic continuum
structure has been extensively analyzed using di}erent techniques[ It has been recognized that it is
possible to _nd simultaneously the optimal material properties and structural layout[ One way to
achieve this is simply by enlarging the space of variables in order to include all possible structures\ i[e[\
by considering completely general elasticity tensor _elds[ This approach is known as the free!material
optimization method and it relies on the use of elasticity tensor _elds which\ a priori\ correspond to
anisotropic and inhomogeneous materials "Bendso�e et al[\ 0883#[ Other methods consider a special
class of anisotropic materials\ namely composites obtained by combining two distinct homogeneous
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materials\ although the problem requires relaxation in order to include optimal composites[ In that
case\ usually assuming the existence of some type of periodic microgeometry\ homogenization theory
is used to compute the e}ective properties at a macroscopic level[ Parameters related to the micro!
geometry are used as variables "Bendso�e\ 0884 for a comprehensive review of both methods#[ The
advantage of the free!material optimization method is that issues related to homogenization do not
need to be taken into account[ Once the optimal material properties have been identi_ed "at a
macroscopic level# one can solve\ if desired\ an inverse problem in order to obtain at each point a
microgeometry that provides the best match to the optimal properties as shown by Sigmund "0883#
"see also Milton and Cherkaev\ 0884#[ The purpose of the present analysis is to include\ within the
free!material formulation\ a body force that depends on the optimization variable "i[e[\ on the elasticity
tensor#[ The motivation for this extension is to analyze cases where a non!negligible inertial force acts
on the structure[ Typical examples are structural elements rotating at a relatively large angular speed
or large structures whose own weight becomes a relevant factor in the analysis[ Early work on problems
with a structure!dependent body force include applications where the objective is to distribute a given
amount of material in an elastic structure in order to match a desired natural frequency "Prager\ 0863#[
A more recent review on the subject was given by Olho} "0876#[ Here\ however\ the objective is to
maximize the structural sti}ness taking into account a variable body force but no restrictions are
placed upon natural frequencies[

The use of a formulation based on a spectral decomposition of the elasticity tensor is emphasized
since it provides a simple geometrical interpretation of the results in a fourth!order tensor space[
It will be shown that the optimized material has two main components] a term which provides the
optimal sti}ness and a term which provides the required stability against possible perturbations
of the prescribed loads[ In this analysis\ it is assumed that the magnitude of the elastic moduli and
the material|s mass density are correlated[ Even though in general there is no a priori relation
between these quantities\ some models used for cellular solids exhibit a functional relation between
the elastic moduli "Gibson and Ashby\ 0886#[ From a di}erent point of view\ a relation between
mass density and elastic properties can be assumed if one has in mind using\ a posteriori\ a method
like the one proposed by Sigmund "0883#[ In that case\ a microgeometry composed of weak
"essentially void# and strong materials is used to match given e}ective properties[ Bearing in mind
that the strong material is _xed "and so is its mass density#\ the resulting volume fraction of the
strong material is directly related to the mass density of the composite material[ Thus\ in this
restricted sense\ one can establish a relation between elastic moduli and mass density and it is
assumed that this relation is strictly monotonic[

The outline of the paper is as follows] in Section 1\ the optimization problem is formulated and
under some speci_c assumptions a simpli_ed version of it is derived by analyzing the restrictions
imposed at a local level " for a continuum# by the global structural requirements[ Optimality
conditions for the problem are developed in Section 2 and speci_c examples with an inertial body
force are treated in Section 3[ A discussion and concluding remarks follow in the last section[

1[ Formulation of the problem

1[0[ Notation

As a general scheme of notation\ scalar quantities are represented by italicized normal!face
letters\ vectors and points in a three!dimensional Euclidean space by bold!face lower case letters
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"except for the stress tensor s and strain tensor o#\ second order tensors by bold!face upper case
letters and fourth order tensors by bold!face upper case italicized letters[ Throughout this analysis\
coordinate!free notation is employed[ To ease the transition to indicial notation\ the following
de_nitions are referred to a three!dimensional Cartesian basis "indices range in "0\ 1\ 2#\ dij is
Kronecker|s delta and the summation convention is used#]

a = b � aibi\ A = B � AijBij\ C = D � CijklDijkl\>A> � zA = A\ >C> � zC = C\

"Ab#i � Aijbj\ "AB#ij � AikBkj\ "CA#ij � CijklAkl\ "a & b#ij � aibj\ "A & B#ijkl � AijBkl\

"I#ij � dij\ "I#ijkl �
0
1
"dikdjl¦dildjk#[

In general\ when the meaning is clear by the context\ a scalar\ vector or tensor _eld de_ned in a
domain V and its value at a point x will be denoted by the same letter\ e[g[\ A � A"x#[ Similarly\
a scalar\ vector or tensor function of a scalar\ vector of tensor _eld will be denoted by the same
symbols\ e[g[\ 8 � 8"A# � 8"A"x##\ when it is clear by the context that 8 is not\ for example\ a
functional[

1[1[ Preliminaries

Consider a linearly elastic body that occupies a given domain V[ Suppose that the prescribed
tractions t and displacements u are

t"x# � t¼"x# x $ 1Vt

u"x# � 9 x $ 1Vu7 "0#

where 1VtkVu � 1V is the boundary of V[ Only mixed boundary conditions of the form of eqn
"0# are considered here[ Let o be the strain tensor _eld which\ viewed as a function of u"x#\ is given
by

o � o"u# � o"u"x## � 0
1
"9u"x#¦9u"x#T#\ [x $ V[

Let C be a " fourth!order# elasticity tensor _eld[ The stress tensor _eld s is related to the strain
tensor via the constitutive law

s"x# � C"x#o"x#[

As a matter of terminology\ the word {structure| should be understood in the present analysis to
refer to a distribution of material properties over the given domain V\ i[e[\ to the _eld C"x#\ x $ V[
By {optimal distribution| it is meant that a speci_c structure "i[e[\ distribution of C"x## is sought
based on maximization of the overall sti}ness of the structure[ A formal statement of this problem
is given in Section 1[3[

To obtain the optimal distribution of material properties\ the basic idea is to let the elasticity
tensor _eld be variable[ It is worth noting that one can accomplish two seemingly distinct objectives
with this approach[ Firstly\ the minimizing _eld C9 provides information on the mechanical
properties of a material at each point "i[e[\ the material optimization#[ Secondly\ since points where
the material properties are {small| are interpreted as holes "in a sense to be de_ned later#\ then C9

also provides the shape of the structure within the domain V by specifying the location of holes[
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Hence\ the shape optimization "structural layout# is obtained as a by!product of the material
optimization[ This ability to perform simultaneously optimization of material properties and
structural layout is one of the main bene_ts of the free!material optimization method and its
simplicity "compared to homogenization techniques# provides an additional advantage[

1[2[ Body force and space of admissible variables

The space of admissible optimization variables is\ in this case\ a subspace of fourth!order tensor
_elds de_ned in V[ For practical reasons\ both physical and mathematical\ some additional
restrictions on the space of optimization variables are required[ To introduce these restrictions it
is convenient to use a spectral decomposition of the elasticity tensor[ Since the admissible elasticity
tensors are symmetric "major symmetry#\ they can be represented at each point x in terms of
their real eigenvalues am "m � 0\ [ [ [ \ 5# and unit eigentensors Am "1!tensors#\ i[e[\ the spectral
decomposition is given by

C � s
5

m�0

amAm&Am\ "1#

where a × 9 and "Am#5
m�0 forms an orthonormal basis for the space of symmetric 1!tensors[ Recall

that for a general "anisotropic# material\ the eigentensors contain information about the material
behavior "via {angles| in a tensor space# but the {{true|| sti}ness information is provided by the six
principal values of the elastic moduli "i[e[\ eigenvalues am#[ For example\ for an isotropic material
there are two distinct eigenvalues] 2k "multiplicity one# and 1m "multiplicity _ve#\ where k is the
bulk modulus and m is the shear modulus "Knowles\ 0884#[ It is also important to note that the
result of this decomposition is that the design variables are now explicitly the eigenvalues and
eigentensors[

The fact that the eigenvalues are strictly positive means that C is positive de_nite[ To satisfy this
requirement\ it is assumed that all eigenvalues are bounded below by the same constant am[
Additionally\ an upper bound aM is imposed on each am "same constant aM for all am#[ Since
"am#5

m�0 are the principal sti}nesses\ the upper bound is seen as a limitation of real materials] the
elastic moduli cannot exceed the values of the sti}est material known in nature "or\ in fact\ of a
predetermined material that would be used to reinforce the structure#[ Finally\ a global upper
bound in the eigenvalues "known as resource constraint# is also imposed[ To this end\ consider a
positive!valued scalar function 8¹ of C which is referred to as the resource constraint density[ In
the work of Bendso�e et al[ "0883#\ a resource constraint density equal to the trace of C was used\
i[e[\

8¹ "C# � s
5

m�0

am[

Following a similar approach\ the resource constraint density considered here is assumed to be
independent of the orientation of the principal directions of the elasticity tensor and dependent on
the eigenvalues of C via their maximum only\ i[e[\
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8¹ "C# � a\ "2#

where a is the maximum principal sti}ness\ i[e[

a � a"x# � max
0¾m¾5

"am"x##[ "3#

Observe that eqn "2# is not the only choice since 8¹ could depend on Am "the orientation of
material properties# which could be interpreted\ e[g[\ as a constraint imposed by manufacturing
requirements[ In terms of a\ the resource constraint is expressed by the following isoperimetric
inequality]

gV
a"x#dv ¾ R\

where the left hand side is the total resource and the given positive constant R represents an upper
bound on the resource[ The main role of the resource constraint is to rule out some trivial solutions[
A typical trivial case occurs when the body force b is zero and the isoperimetric inequality is not
enforced] the sti}est structure is obtained when the optimization variable coincides with the local
upper bound\ i[e[\ it coincides with the sti}est material properties everywhere[

For future use\ all the requirements on the space of admissible optimization variables can be
collected via the following sets]

Sam
� 6"a#5

m�0 =am ¾ am"x# ¾ aM\ gV
a dv ¾ R\ [x $ V7\

and

SAm
� 6"Am#5

m�0 =Am = An � dmn\ Am � AT
m \ s

5

m�0

Am&Am � I7\
where a is de_ned by eqn "3# and dmn is Kronecker|s delta[ The symmetry of each Am re~ects the
minor symmetries of C[ Now\ it is assumed that there exist functional relations between the
principal elastic moduli "eigenvalues am# and the mass density r\ i[e[\ am � a¹m"r#[ To motivate this
assumption from a physical point of view\ one could refer\ for example\ to models used for cellular
solids "Gibson and Ashby\ 0886#[ In that context it has been found experimentally that\ in the
linearly elastic range\ the material properties scale with some power of the mass density "e[g[\ the
shear modulus for elastomeric foams is m½r1\ etc[#[ Similar relations are sometimes used in some
simple models for composite materials where the material properties depend on the volume fraction
of each component "hence they depend on the relative mass densities#[ Furthermore\ assuming
that these relations can be inverted\ then the mass density could be expressed as a function of one
of the eigenvalues of C^ in particular\ r � r¹ "a#\ where a is the maximum principal sti}ness[ Thus\
assuming the existence of such a model\ an "inertial# body force can be viewed as a function of a\
i[e[\

b�b¼"r¹ "a## � b¹"a#[ "4#

With this interpretation\ the resource constraint can also be seen as a restriction on the total mass
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of the structure[ However\ it is important to mention that the present analysis is limited to cases
where a relation such as "4# can be identi_ed[

Let W be the work done by the external forces\ i[e[\

W ðu\ b¹"a#Ł � gV
b¹"a"x## = u"x# dv¦ g1Vt

t¼"x# = u"x# da[ "5#

Let V be a suitably chosen space of kinematically admissible displacement _elds[ For given
boundary conditions "0# and for a speci_c "i[e[\ {{frozen||# elasticity tensor _eld C\ the displacement
_eld u that satis_es the equilibrium equation is the "unique# element of the set EC de_ned as follows]

EC � 6u $ V=gV
o"u# = Co"v#dv � Wðv\ b¹ "a#Ł [v $ V7[ "6#

The work W given by eqn "5# is viewed as a global measure of the sti}ness of a structure and takes
into account the prescribed domain V and boundary conditions[ The sti}est structure corresponds
to the one which minimizes W for _xed boundary conditions\ eqn "0#\ when the elasticity tensor
_eld C is taken as variable[

1[3[ Optimization problem] maximum structural stiffness

The optimization problem is stated as] for a linearly elastic material occupying a given domain
V and for boundary conditions given by eqn "0#\ _nd the minimizer

C � s
5

m�0

amAm&Am

of the following expression]

min
"am#$Sam

min
"Am#$SAm

W ðu\ b¹ "a#Ł "P0#

where u $ Ec "hence the admissible _eld u is the equilibrium solution for a given _eld C# and a is
given by eqn "3#[ The two minimization parts re~ect a decomposition of the optimization problem
in terms of two sets of variables "eigenvalues "am# and eigentensors "Am# of C#[ The sets Sam

and
SAm

correspond to the constraints on the optimization variables[ For the solution u of the elasto!
static problem "i[e[\ u $ Ec#\ the dependence of W on C\ as given by eqn "5#\ is two!fold] u depends
implicitly on the constitutive law and\ by assumption\ the body force depends explicitly on the
maximum eigenvalue of C[ Formally\ W also depends on V and the prescribed boundary conditions\
but these are considered _xed[

The problem "P0# can be simpli_ed considerably by virtue of a saddle point theorem as proved
in Bendso�e et al[ "0883# "Jog et al[\ 0882^ Lipton\ 0883#[ This is an established result in the
optimization of structures[ Nonetheless\ in order to illustrate the explicit role played by the
eigenvalues and eigentensors of C introduced in eqn "1# and to show that the saddle point theorem
remains una}ected by a structure!dependent body force of the form of eqn "4#\ it is useful to revisit
this result[ More signi_cantly\ the analysis presented here provides an interpretation of the solution
of the optimization problem in terms of a positive de_nite material\ as opposed to previous solutions
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which were given in terms of semi!de_nite materials[ To this end\ the admissible displacement _elds
in "P0# are characterized as minimizers of the potential energy "instead of enforcing the equilibrium
equations#[ The potential energy is given by P � U−W\ where

U � 0
1gV

o = Codv

is the total strain energy[ The minimum value of the potential energy is P� � −0
1
W�\ hence\

reversing the sign of the objective functional\ the problem "P0# can be expressed alternatively as]
_nd the maximizing eigenvalue _elds\ eigentensor _elds and minimizing displacement _eld of the
following expression]

max
"am#$Sam

max
"Am# $ SAm

min P
v$V

ðam\ Am^ vŁ\ "P1#

where\ since

o = Co � s
5

m�0

am"o = Am#1\

the potential energy is

Pðam\ Am^ vŁ � s
5

m�0gV

0
1
am"o"v# = Am#1dv−Wðv\ b¹ "a#Ł[ "7#

The minimization part in "P1# corresponds to the elastostatic problem for a given elasticity tensor
_eld[ In view of the saddle point theorem mentioned above\ the two inner problems in "P1# can be
interchanged "the theorem can be applied because it is assumed that b¹ is not a function of Am#[ It is
worth noting that the outermost maximization problem cannot be interchanged with the innermost
minimization problem since they provide di}erent solutions[ After interchanging the two inner
problems in "P1#\ the innermost problem becomes\ for given v and "am#5

m�0\ a local algebraic
problem\ i[e[\ _nd the maximizers\ at each point x $ V\ in the following expression]

max
"Am#$SAm

s
5

m�0

0
1
am"o"v# = Am#1[ "8#

To provide a {geometrical| interpretation of the problem notice that\ since o = Co �"o&o# = C\ then
eqn "8# is equivalent to

max
"AmAm# $0

1
"o"v#&o"v## = s

5

m�0

am"Am&Am#%\ "09#

where the maximization is carried out for six 3!tensors of the form Am&Am and the problem is
linear since the goal is to maximize the scalar product of {vectors| in a 3!tensor space\ where both
"am#5

m�0 and o&o are _xed[ The objective function in the inner problem of eqn "09# "or eqn "8##
admits the following trivial bound]
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0
1
"o&o# = s

5

m�0

am"Am&Am# ¾ 0
1

max
0¾m ¾ 5

"am#>o&o> � 0
1
ao = o[ "00#

This upper bound is independent of "Am# and depends on the local values of "am# only via their
maximum a[ To reach this bound\ one could choose the eigentensor corresponding to the maximum
eigenvalue as

A � o¼ �
o

>o>
\

while the other eigentensors can be chosen arbitrarily as long as they form an orthonormal basis[
This choice can be made regardless of the multiplicity of the maximum eigenvalue "i[e[\ one of the
eigentensors corresponding to a can be de_ned as above#[ With this speci_c choice the upper bound
is reached\ thus providing an optimal solution for the set "Am#\ valid for any point x $ V\ in terms
of the "kinematically admissible# displacement _eld v[ An explicit expression for the eigentensors
di}erent than o¼ is not required for the present purposes[ From eqns "7#\ "00# and the de_nition of
Sam

\ one can see that if the upper bound is reached\ then the problem "P1# depends only on the
maximum eigenvalue a[ In that case\ the eigenvalues smaller than a can be chosen arbitrarily as
long as they belong to Sam

[ This problem has no unique solution\ however a convenient choice is
to set these eigenvalues to the lower bound am in order to guarantee that a is the maximum[ If the
multiplicity of a is greater than one\ then the above choice corresponds to reducing its multiplicity
to one[ The essential point is that any admissible choice provides the same _nal result "i[e[\ upper
bound#[ The optimal material can now be expressed as

C9 � C9"a\ v# � "a−am#
o"v# & o"v#

>o"v#>1
¦amI[ "01#

The coupling between the optimization and elastostatic problems is re~ected in the fact that the
elasticity tensor depends on the strain _eld[ It is noted in passing that C9 is an orthotropic material
with symmetry directions aligned "locally# with the principal directions of the strain tensor] to see
this\ suppose that Q is a proper orthogonal second order transformation that commutes with o\
hence Q and o have the same principal directions in an Euclidean space[ Since C9 transforms as
S5

m�0 amQAmQ
T
& QAmQ

T and since QoQT � o then it follows from "01# that Q belongs to the
material symmetry group of C9[ The orthotropy of the optimal material is\ in fact\ a well!known
result "see\ e[g[\ Pedersen "0878#\ Cowin "0883##[ However\ the speci_c form "01# has a new
ingredient compared to the one proposed by Bendsoo�e et al[ "0883#\ i[e[\ the term amI\ which
provides the required stability of the material[ Recently\ Taylor "0887# proposed a general frame!
work where\ among other things\ terms such as amI can be easily introduced[ The essential term in
the material "01# is a 3!tensor perpendicular projection onto the 1!tensor space spanned by the
strain tensor "which can be interpreted as an optimal {{reinforcement\|| characterized by the
maximum principal sti}ness a#[ For illustration purposes\ the material properties of the orthotropic
material can also be expressed in terms of the "three# Young moduli Ei\ the "three independent#
Poisson|s ratios nij and "three# shear moduli Gij[ Let o¼i\ i � 0\ 1\ 2\ be the principal values of the
"unit# strain tensor o¼ � o:>o>^ for an arbitrary strain tensor g\ the corresponding stress is\ from eqn
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"01#\ s � C9g �"a−am#"o¼ = g#o¼¦amg[ Hence\ the elastic moduli referred to a Cartesian basis aligned
locally with the principal directions of o"v# are given by

Ei �
aam

am¦"0−o¼1
i #a

\ nij �
"a−am#o¼io¼j

am¦"0−o¼1
i #a

\ Gij �
0
1
am[

Moreover\ the stress _eld associated with the optimal strain _eld o"v# takes the following simple
form]

s � C9o � ao[ "02#

By optimal strain _eld it is meant that o is the strain _eld in the elastostatic problem after the
material C has been optimized analytically with respect to the set "Am#[ Although the elasticity
tensor given by eqn "01# is anisotropic\ its restriction to the optimal strain _eld\ given by eqn
"02#\ corresponds formally to an isotropic material with material coe.cients 2k � 1m � a or\
equivalently\ to n � 9 and E � a where n is Poisson|s ratio and E is Young|s modulus[ This
formal interpretation is valid since the optimization and elastostatic problems are being solved
simultaneously\ hence the optimal material properties are coupled to the optimal displacement
_eld "this is referred to as a self!adaptive material\ although it is a mathematical rather than a
physical property#[

In view of eqn "01#\ the problem "P0# can be simpli_ed in terms of the scalar _eld a "maximum
principal sti}ness#\ i[e[\ _nd the minimizer a of

min
a$Sa

Wðu\ b¹ "a#Ł\ "P2#

where u $ Ea\

Ea � 6u$V=gV
ao"u# = o"v#dv � Wðv\ b¹ "a#Ł [v $ V7 "03#

and

Sa � 6a=am ¾ a"x# ¾ aM\ gV
adv ¾ R\ [x $ V7 [

At points where the maximum principal sti}ness a is equal to its lower bound am\ the interpretation
is that no reinforcement is required[ The formulation "P2# provides a signi_cant simpli_cation
from "P0# since the minimization is carried out for a single scalar _eld as opposed to a tensor _eld[
For given a\ the local form of the elastostatic problem of the optimal strain o at points where a

and o are smooth is\ from eqn "03#

div"ao#¦b¹ "a# � 9 in V\ "04a#

sn � aon � t¼ on 1Vt\ "04b#

u � 9 on 1Vu\ "04c#

where n is the outward unit normal vector to the boundary 1V[ Observe that for the shape
optimization\ {holes| are identi_ed via a limit process when am:aM : 9\ for which uniqueness is
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preserved[ However\ in the limit\ the material becomes semi!de_nite\ which is in fact one of the
limitations of the {true| single!loading shape optimization problem[ Hence\ after the solution of
"P2# has been identi_ed "optimal structure# and is considered to be _xed\ am needs to be bounded
away from zero by an amount comparable to possible perturbations on the surface loads in order
to have a {robust| structure[

2[ Optimality conditions

The optimality conditions correspond to a set of necessary relations satis_ed locally by the
minimizer of "P2# and can be used for numerical methods or to solve some simple problems in
closed form as will be shown in Section 3[ To obtain these conditions\ consider the Lagrangian L
given by

Lða^lm\ lM\LŁ � W9 ðu\ b¹ "a#Ł¦gV
ðlm"am−a#−lM"a−aM#Łdv¦L6gV

adv−R7\ "05#

where lm � lm"x#\ lM � lM"x# are Lagrange multipliers associated with the upper and lower bound
constraints respectively and L is the "constant# multiplier corresponding to the resource constraint[
As mentioned before\ the displacement _eld u is viewed as a function of a since it can be obtained
from eqn "03#[ Hence\ in terms of the Lagrangian L\ the problem "P2# can be expressed as] _nd
the maximizers lm\ lM\ L and minimizer a in the following expression]

max
lm−9\lM−9\L−9

min
a

Lða^ lm\ lM\ LŁ[

The gradient of L with respect to a can be computed as follows] consider a variation da which
induces variations du and db¹[ Let L? be the gradient of L\ therefore\ from eqns "4#\ "5#\ "01# and
"05# it follows that

dLðdaŁ � gV
L?dadv � gV

"db¹ = u¦b¹ = du#dv¦g1Vt

t¹ = duda−gV
"lm−lM−L#dadv[ "06#

To complete the calculation\ one can take variations in eqn "03#\ then integrate by parts\ choose
v � u\ and use eqns "04# and "06# to get

gV
L?dadv � gV

1db¹ = udv−gV
da"o"u# = o"u#¦lm−lM−L#dv[

Since db¹ � b¹?da\ where b¹? is the gradient of b¹ with respect to a\ then\ assuming enough di}er!
entiability\ the local form of the gradient is

L? � 1b¹ = u−o"u# = o"u#−lm¦lM¦L[ "07#

Therefore\ the optimality conditions "KarushÐKuhnÐTucker conditions# are\ [x $ V\
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L? � 9\

lm"am−a# � 9\ lm − 9\

lM"a−aM# � 9\ lM − 9\

L"gV
adv−R# � 9\ L − 9[

"08#

To interpret the optimality conditions one can use the following domains]

Vm � "x $ V=a"x# � am#\

VM � "x $ V=a"x# � aM#\

Vi � "x $ V=am ³ a"x# ³ aM#[ "19#

Hence\ since lm � 9 for x $ VM\ lM � 9 for x $ Vm\ and lm � lM � 9 for x $ Vi\ the optimality
conditions of eqn "08# become

L � o"u# = o"u#−1b¹? = u\ x$Vi\

L−lm � o"u# = o"u#−1b¹? = u\ lm × 9\ x $ Vým\

L¦lM � o"u# = o"u#−1b¹? = u\ lM × 9\ x $ VýM\

L"gV
adv−R# � 9\ L − 9\ x $ V[

"10#

If b¹ � b¹? � 9 then one can prove that L × 9 and hence that the resource constraint is active "i[e[\
satis_ed as an equality^ Bendso�e et al[\ 0883#[ Clearly\ to have a non!trivial solution in the case
when the resource constraint is active\ the upper bound R in the resource constraint has to satisfy
am=V= ³ R ³ aM=V=[ However\ if b¹? 0: 9\ it is possible that L � 9 and the problem "P2# has a non!
trivial solution[ This case will be illustrated by an example in Section 3[ Furthermore\ recall that
it was assumed that b¹ is a monotonically increasing function of a hence\ in view of eqn "07#\ if
b¹ = u × 9\ the local e}ect of the term 1b¹? = u is to increase the value of the gradient of the Lagrangian
L[ Conversely\ if b¹ = u ³ 9 "hence b¹? = u ³ 9#\ the local e}ect of the term 1b¹? = u is to decrease L?[
Therefore\ compared to the case when the body force is zero\ the optimal structure is locally
weaker "smaller maximum principal sti}ness a# if b¹ = u × 9 and locally sti}er "greater a# otherwise[
This e}ect will be illustrated by a three!dimensional example in the next section[

3[ Example] the optimal rotating structure

As an example of a structure!dependent body force\ consider the problem of _nding the sti}est
structure occupying a domain V and rotating at a constant angular velocity v[ Let "er\ eu\ ez# be a
cylindrical orthonormal basis where ez is aligned with the axis of rotation and er\ eu are _xed with
respect to V "er points in the outward radial direction#[ For illustration purposes\ suppose that the
optimization is carried out with a material for which the mass density r is related to the maximum
principal sti}ness a linearly\ i[e[\
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r � ka\

where k is a positive constant[ It is worth noting that for nonlinear functions r the corresponding
problem is nonlinear and might not have a solution[ The inertial force can be modeled in the
elastostatic problem as the body force

b¹ "a# � v1rrer � v1rkaer\ "11#

where r is the orthogonal distance from a given point in V to the axis of rotation[ To obtain some
insight in the problem\ it is possible to solve analytically a one!dimensional example[ To this end\
consider a prismatic region V of length l and cross!sectional area a[ Suppose that the displacement
_eld and the maximum principal sti}ness a depend on r only\ r $ ð9\ lŁ[ As an ansatz\ assume that
the domains de_ned by eqn "19# are such that VM � ð9\ r0Ł\ Vi � ðr0\ r1Ł\ Vm � ðr1\ lŁ and that the
resource constraint is not active "i[e[\ L � 9#[ It will be shown a posteriori that these assumptions
are appropriate to characterize solutions with boundary conditions u"9# � 9 and
s � a"l#u?"l# � s9 × 9\ where u"r# is the radial displacement[ The optimality conditions of eqn "10#
become

lM"r# �"u?"r##1−1kv1ru"r#\ lM"r# − 9\ 9 ¾ r ¾ r0 "12a#

"u?"r##1−1kv1ru"r# � 9 r0 ¾ r ¾ r1 "12b#

lm"r# �"u?"r##1¦1kv1ru"r#\ lm"r# − 9\ r1 ¾ r ¾ l "12c#

and the balance of linear momentum is\ from eqn "04a#\

"au?#?¦kv1ra � 9\ 9 ¾ r ¾ l[ "13#

Observe that\ since a � aM × 9 in VM and a � am × 9 in Vm\ then eqn "13# becomes

uý"r#¦kv1r � 9\ [r $ VMkVm[

The displacement _eld can be determined in VM and Vm up to a constant "say\ cM and cm# by
solving eqn "13# and using the boundary conditions[ This\ in turn\ provides an expression for lM"r#
and lm"r# from eqn "12a\c#[ Furthermore\ solving eqn "12b# gives the displacement _eld in Vi up
to a constant "say\ c0#[ With this displacement _eld one can solve eqn "13# in Vi and determine a"r#
up a constant "say\ c1#[ The solution is displayed more conveniently in nondimensional form[
De_ne

u¹ �
u
lg

\ r¹ �
r
l
\ a¹ �

a

aM

\ where g � kv1l1\

and the following nondimensional parameters]

f �
1s9

aMkv1l1
\ b �

am

aM

[ "14#

The parameter f\ referred to as the loading parameter\ includes the applied loads\ the upper bound
of the material properties and a term related to the body force\ so it can be interpreted as the ratio
of surface to body forces[ The parameter b\ referred to as the moduli parameter\ corresponds to
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the nondimensional ratio of the lower and upper bounds of the reinforcement or\ equivalently\ to
the nondimensional modulus of the term amI of the optimal material C9[ The displacement _eld
and the maximum principal sti}ness "reinforcement# are given by

u¹ "r¹# � 8
0
5
r¹"cM−r¹1# r¹ $ VM � ð9\ r¹0Ł\

0
07

"2c0¦1r¹2:1#1 r¹ $ Vi � ðr¹0\ r¹1Ł\
0
5
ðcm¦r¹"2c1

9−r¹1#Ł r¹ $ Vm � ðr¹1\ 0Ł\

"15#

and

a¹ "r¹# � 8
0 r¹ $ VM � ð9\ r¹0Ł\

c1

zr¹"2c0¦1r¹2:1#1
r¹ $ Vi � ðr¹0\ r¹1Ł\

b r¹ $ Vm � ðr¹1 0Ł\

"16#

where the constant c9 in "15# is c9 � z0¦f :b[ Two relevant nondimensional quantities can be
identi_ed in this solution] the loading and moduli parameters f and b de_ned in eqn "14# which
can be used to characterize the di}erent loading cases[ The constants cm\ cM\ c0\ c1\ r¹0\ and r¹1 are
determined as follows] since r¹0 and r¹1 represent the location of the boundaries between VM\ Vi\ and
Vi\ V respectively\ then\ for an admissible solution\ it is required that lM"r¹0# � lm"r¹1# � 9[ These
conditions can be satis_ed by choosing cM and cM as follows]

cM �"8¦1z04#r¹1
0\ cm �

0
3r¹1

"2c3
9−07c1

9r¹
1
1¦6r¹3

1#[

Furthermore\ two additional relations can be obtained from the continuity of u¹ at r¹ � r¹0 and r¹ � r¹1\
i[e[\

c0 �
0
200¦z041r¹2:1

0 �
0

5zr¹1
02c1

9−6r¹1
11[

There are other possible values for cM and c0 "cm is unique#\ but these can be discarded a posteriori
based on the requirements that the solution should not be singular and that the multipliers lm and
lM should be positive in ð9\ r¹0# and "r¹1\ 0Ł respectively[ Finally\ the value of c1 and an additional
relation between r¹0 and r¹1 can be obtained by enforcing the continuity of a¹ at r¹ � r¹0 and r¹ � r¹1

which gives

c1 � 5"3¦z04#r¹6:1
0 � bzr¹1""0¦z04#r¹2:1

0 −1r¹2:1
1 #1[

The values of r¹0 and r¹1 can be computed numerically from the above relations[ As f increases\ so
do r¹0 and r¹1[ For some values of f\ r¹1 − 0\ then the solution needs to be modi_ed since Vm � /

"i[e[\ the solution never reaches its lower bound b#[ In that case the solution depends on the
loading parameter f but not on b[ The value of r¹0 can be obtained from the boundary condition
a"l#u?"l# � s9\ which can be expressed as
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Fig[ 0[ One!dimensional case] normalized total resource R¹ t � Rt:"aMal# for di}erent values of the loading and moduli
parameters f and b[ The insert corresponds to the limit case b : 9 and shows the full range 9¾ R¹ t ¾ 0[ For prescribed
values of f and b\ the resource constraint is not active if the prescribed R¹ is above the corresponding R¹ t and active
otherwise[

3"3¦z04#r¹6:1
0 � f "1¦"0¦z04#r¹2:1

0 #[ "17#

Finally\ for f large enough\ r¹0 − 0\ hence the solution is trivial] a¹00 and the boundary condition
is satis_ed with cM � 2" f ¦0#[ From eqn "16# one can obtain the total resource\

Rt � ag
l

9

adr\

where a is the cross!sectional area[ Since a¹ "r¹# is a monotonically decreasing function from 0 to b

as r¹ ranges from 9 to 0\ then 9 ³ b ³ R¹ t ³ 0 where R¹ t � Rt:"aMal#[ Therefore\ one can always
choose an upper bound R¹ � R:"aMal# on the resource such that R¹ t ³ R¹ ³ 0\ i[e[\ such that the
resource constraint is not active but R¹ t � 9[ This con_rms the assumption that there are non!trivial
solutions with L � 9[ Clearly\ if the prescribed R¹ is such that R¹ t × R¹ \ then eqns "15#Ð"16# would
not be an admissible solution since the resource constraint would be violated[ However\ an
analytical expression for the solution when the resource constraint is active is not available[

Figure 0 represents the total resource R¹ t for di}erent values of the moduli parameter b and
loading parameter f[ Observe that for values of f large enough\ the solution does not depend on b

anymore and all curves merge into a common envelope which can be thought of as the limit case
b : 9 for all values of f "see insert in Fig[ 0#[ If\ for a given pair b\ f\ the prescribed upper bound
on the resource constraint R¹ is above the corresponding curve R¹ t\ then the resource constraint is
not active[ The maximum principal sti}ness a¹ "r¹# is shown in Fig[ 1[ for di}erent values of b and a
common loading parameter f � 9[0[ The solid curve represents the case for which the solution does
not depend on b for the given f "i[e[\ b is below some critical value b�#[ In the _rst part of each
curve\ a¹ is at its upper bound then it decreases monotonically to its lower bound b "except for
b ³ b�#[ The corresponding minimum values of the objective functional are W¹ �"b � 9[2# �
4[00×09−1\ W¹ �"b � 9[1# � 3[96×09−1\ and W¹ � � 2[29×09−1 for b ³ b�[ Although b is viewed
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Fig[ 1[ One!dimensional case] value of the maximum principal sti}ness a¹ "reinforcement# in the radial direction for
various values of the moduli parameter b and a common loading parameter f � 9[0[ The solid curve represents the limit
case for which the solution does not depend on b[

as a _xed parameter\ the optimal solution is reached for values of b ³ b�[ However\ as mentioned
before\ b needs to be bounded away from zero in order to have a stable structure[ Figure 2
corresponds to the displacement _eld as a function of r¹ for di}erent values of b[ Observe that at
r¹ � 0 the displacement of the solution that does not depend on b "solid line# is greater than for the
other curves\ however\ the energy norm which measures structural sti}ness is smaller[ Similarly\
as shown in Fig[ 3\ the stress distribution is also smaller for b ³ b�\ which corresponds to the
stress!based notion of optimal structure[ Figure 4 shows\ for di}erent values of b\ the "negative#
unconstrained gradient of the Lagrangian L as de_ned in eqn "05# "i[e[\ −"L?¦lm−lM#:g1 �
u¹¾1−1r¹u¹\ where the dot represents di}erentiation with respect to r¹#[ For each curve\ the value of
the function in the _rst interval VM � ð9\ r¹0# "where the local upper bound is active "a¹ � 0# and
where L? � lM � 9# corresponds to lM:g1 × 9^ in the second interval Vi � ðr¹0\ r¹1Ł "where no local
bounds are active# to L? � lM � lm � 9 and in the third interval Vm �"r¹1\ 0Ł "where the local lower
bound is active "a¹ � b# and where L? � lm � 9# to −lm:g1 ³ 9[ Observe that for b ³ b� "solid
curve#\ there is no third interval since Vm � 9:[

To illustrate that this procedure can be used in a more general setting\ a three!dimensional
example was solved using a _nite element program[ Consider again the case of the optimal
distribution of material properties in order to obtain maximum structural sti}ness of a rotating
prismatic structure of length l and square cross!sectional area h1[ The side attached to the axis of
rotation is modeled as a clamped end[ The remaining sides of the structure are subjected to the
following loads]
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Fig[ 2[ One!dimensional case] radial displacement u¹ "r¹# for various values of the moduli parameter b and a common
loading parameter f � 9[0[ The solid curve represents the limit case for which the solution does not depend on b[

Fig[ 3[ One!dimensional case] stress distribution as a function of radial position for various values of the moduli
parameter b and a common loading parameter f � 9[0 "i[e[\ the boundary condition is s¹ "0# � f:1#[
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Fig[ 4[ One!dimensional case] "negative# unconstrained gradient of the Lagrangian "� u¹¾1−1r¹u¹# for various values of
the moduli parameter b and a common loading parameter f � 9[0[ The solid curve represents the limit case for which
the solution does not depend on b[ See text for detailed explanation[

Case 0] shearing load]

t¼� 6
t9ez for r � l "uniform shear stress#

9 otherwise

Case 1] torsional load]

t¼� 8
−t9ez for r � l\ x $ ð−h\ −h¦oŁ\

t9ez for r � l\ x $ ðh−o\ hŁ\

9 otherwise

where o is a small number\ the origin of coordinates is in the mid!section and x is measured in the
eu direction[ The numerical values used here\ for illustration purposes\ are as follows] l � 0 m\
h � 9[0 m\ aM � 0909 Pa\ am � 097 Pa\ k � 09−6 s1 m−1 and v � 499 RPM[ In Case 0\ t9 � 095 Pa
and in Case 1\ t9 � 0[4×095 Pa\ o � 9[90 m[ In both cases the resource constraint is active with
R � 9[4 lh1aM � 9[4×097 Pa m2[ The maximum principal sti}ness a¹ � a:aM is shown for the loading
Case 0 "shearing load# in Fig[ 5 "without a body force# and 6 "with a body force#[ Figure 7
represents contour plots of a¹ at the cross!section r¹ � 9[64 for the load Case 0^ the section on the
left corresponds to the case when the body force is absent and the right one when it is included[
Observe that\ in the latter cross!section\ the top of the structure is in compression\ thus b¹ = u ³ 9\
which results in a greater reinforcement than the bottom which is in tension "see end of Section
2#[ In contrast\ when the body force is absent\ the solution is symmetric with respect to the r\ u

mid!plane\ as shown in the left cross!section in Fig[ 7[ "compare also Figs 5 and 6#[ The heuristic
interpretation is as follows] _rst\ observe that in this example the body force always creates tension
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Fig[ 5[ Loading Case 0 "shearing load#] contour plot of the maximum principal sti}ness "reinforcement# without a body
force[ Observe the symmetry of the solution with respect to the er\ eu mid!plane[

at any point of the structure[ Now\ consider a point of the structure which is in compression
because of the applied shear load[ If the material is locally sti}er "hence\ the local mass density is
higher#\ then the body force that tends to oppose compression would be higher resulting in an
overall smaller displacement[ The opposite e}ect occurs at points which\ because of the applied
shear load\ are in tension[

For the loading Case 1 "torsional load#\ Fig[ 8 shows the maximum principal sti}ness when the
body force is not present and Fig[ 09 when it is[ In Fig[ 00\ two cross!sections at r¹ � 9[64 are
shown^ the left one corresponds to the case without the body force and the right one when the
body force is taken into account[ The procedure reproduces the well!known optimal {circular|
layout "within the limitations of the mesh and the e}ect of the boundary conditions at r � 9 and
r � l#[ The center of the cross!section is at the lower bound "hence\ it can be interpreted as a {weak|
region\ i[e[\ as a {hole|#[ This illustrates the ability of the method to obtain the optimal shape as a
by!product of the material optimization[ The e}ect of the body force is re~ected in the gradual
decrease of reinforcement from r � 9 to r � l\ as shown by the cross!sections in Fig[ 00 "compare
also Figs 8 and 09#[
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Fig[ 6[ Loading Case 0 "shearing load#] contour plot of the maximum principal sti}ness "reinforcement# with a body
force[ The upper section has a greater reinforcement than the lower section[

Fig[ 7[ Loading Case 0 "shearing load#] cross!sectional contour plot of the maximum principal sti}ness "reinforcement#
at r¹ � 9[64^ the left plot corresponds to the case without a body force "symmetric solution# and the right one to the case
with body force "greater reinforcement in upper section which is in compression\ lesser reinforcement in lower section
which is in tension#[
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Fig[ 8[ Loading Case 1 "torsional load#] contour plot of the maximum principal sti}ness "reinforced material# without
a body force[ Observe that the distribution of reinforcement is prismatic\ except close to r¹ � 9 and r¹ � 0 due to the
boundary conditions[

4[ Discussion and conclusions

The method presented here identi_es a positive!de_nite optimal material that maximizes the
structural sti}ness when a structure!dependent body force is taken into account[ Two interesting
aspects arise due to the presence of the body force] as opposed to problems with zero body force\
the resource constraint might not be active yet it is possible to have a non!trivial solution where

gV
8"a#dv � R� � 9[

This suggests that there is a {natural| upper limit R� on the amount of reinforcement material that
needs to be used "i[e[\ trying to specify from the onset a greater amount will not a}ect the optimal
solution#[ Also\ it is not necessarily true that the presence of the body force will result in a local
increase of the material properties in order to sti}en the structure[ In fact\ as shown by eqn "10#\
this depends on whether the scalar product of the body force and the displacement is negative
"local sti}ening# or positive "local weakening#[ It is usually assumed that at points on the surface
where the loads are applied\ the optimal layout would consist of some type of reinforcing structure
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Fig[ 09[ Loading Case 1 "torsional load#] contour plot of the maximum principal sti}ness "reinforced material# with a
body force[ Observe the gradual decrease in reinforcement from r¹ � 9 to r¹ � 0[

Fig[ 00[ Loading Case 1 "torsional load#] cross!sectional contour plot of the maximum principal sti}ness "reinforcement#
at r¹ � 9[64^ the left plot corresponds to the case without a body force and the right one to the case with body force[
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to support those loads[ However\ this is not the case if the structure itself turns out to increase
substantially the work done by the body force[ Clearly\ as shown by the optimality conditions\
there is a compromise between these two opposite e}ects and the outcome can be quanti_ed based
on a characteristic magnitude of the surface loads\ the upper bound on material properties\ a
characteristic magnitude of the body force and whether the resource constraint is active or not[ If
the inertial forces are small compared to the applied loads "i[e[\ large loading parameter f # then\
as expected\ the procedure converges to a solution similar to the case without body force[ However\
if the inertial forces are large "small f #\ then the procedure might fail to develop a suitable structure
to support the loads and large displacement gradients could occur at those points[ Nevertheless\ a
layout which includes a supporting structure for the loads can always be obtained by selecting an
appropriately large value for the lower bound am[ Finally\ it is worth noting that the numerical
implementation of this method for three!dimensional problems can be achieved with relative ease
by combining "existing# _nite element programs and customized optimizing codes[
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